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Abstract
We present a formalism for dealing directly with the effects of the Gutzwiller projection
implicit in the t–J model which is widely believed to underlie the phenomenology of the
high-Tc cuprates. We suggest that a true Bardeen–Cooper–Schrieffer condensation from a
Fermi liquid state takes place, but in the unphysical space prior to projection. At low doping,
however, instead of a hidden Fermi liquid one gets a ‘hidden’ non-superconducting resonating
valence bond state which develops hole pockets upon doping. The theory which results upon
projection does not follow conventional rules of diagram theory and in fact in the normal state is
a Z = 0 non-Fermi liquid. Anomalous properties of the ‘strange metal’ normal state are
predicted and compared against experimental findings.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The following is taken from the lecture as given and is a
discursive summary of a several year program. Readers who
may want more detail are urged to look at the more extensive
calculations and experimental comparisons in [1–4] and other
papers on arXiv. We would note that many of the data for
which agreement is claimed (the tunneling asymmetry and
shape, shapes of EDCs (energy distribution curves) in ARPES,
power law behavior of σ(ω), normal state resistivity) are of
a detailed nature which alternative theories do not attempt to
explain or compute.

The story starts with a question we first encountered five
years ago from Doug Scalapino: ‘Why is it that the electrons
in the cuprates can be described by quasiparticles in the
superconductor, but in the normal state do not look at all like
a Fermi liquid?’ The answer: because there is a Fermi liquid
in the problem, undergoing a BCS transition. But it’s hidden
because its quasiparticles are not the real physical electrons.
In the ‘normal’ state, the strange metal, the wavefunction
renormalization connecting the two, Z , is zero. When the gap
opens, Z becomes finite; there is a coherent quasiparticle.

The solution to this paradox: Gutzwiller projection. This
is not a mathematical trick, it’s a physical fact. Doing cuprates

without Gutzwiller projection is abandoning the attempt to find
a low-energy effective theory, since it leaves us with matrix
elements connecting to high-energy doubly occupied states.

It is therefore fundamental to transform to a projected
Hamiltonian,

Ht−J = eiS H0e−iS = Pt P + J
∑

i, j

Si · Sj

P =
∏

i

(1 − ni,↑ni,↓).

(1)

Eigenstates (ground and single-particle excitations) must
be of the form,

� = P�(r1, r2, . . . , rN ) (2)

so we try to find � variationally. We make the obvious
Hartree–Fock–BCS ansatz:

� =
∏

k

(uk + vkc∗
k↑c∗

−k↓)�vac (3)

and determine the coefficients uk and vk variationally, thus
acquiring a set of gap equations.
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Figure 1. Revised cuprate phase diagram including the HFL and
HRVB regions (the crossover between the two regions is shown by
the blue line).

2. Gutzwiller projected Fermi sea: the ‘hidden’ FL

Ansatz: the unprojected low-energy states of a strongly
correlated (that is, with an upper Hubbard band) Fermi gas can
be chosen to be a Fermi liquid (if no gap). That is, in equations:

P =
∏

i

(1 − ni,↑ni,↓) T =
∑

i, j,σ

ti j c∗
iσ c jσ

H = PTP � = P�

(4)

H� = E� is the same as H� = E�. � not � , is assumed
to have Fermi liquid properties: the hidden Fermi liquid [5].

2.1. Another possibility: the hidden RVB (HRVB)

Suppose J � PTP. J will control the ‘hidden’ structure,
an RVB, not a Fermi liquid. The ‘Fermi surface’ is four
point nodes which expand into Rice–Zhang ‘pockets’ of Fermi
surface upon doping. Yang et al [6] have made a good start
at this theory, all indications suggest it is right (see [7] for
example) for well underdoped cases. These cases are not
competitors but rather two different limits! The crossover is
challenging. Keep tuned as much is happening, but that is not
this talk. Our proposed new phase diagram has a crossover line
separating the HFL from the HRVB regimes (figure 1).

Returning to the HFL, if �0 is the ground state of
this problem, ckσ �0 for k < kF and c∗

kσ �0 for k >

kF create eigen-excitations with finite amplitude Z , if k is
near a sharp Fermi surface, determined by Hartree–Fock
equations using projected H. Why?—Why not? Shankar’s
‘poor man’s renormalization’ [8] seems to apply—all Fermi
systems renormalize to FL in shell around FS (figure 2). They
also create pieces in the upper Hubbard band, but these are
projected away by the Hamiltonian and don’t mix (figure 3).
Since these two problems are equivalent, P = P2, these are
also excitations of the real problem. But we cannot access them
directly via real one-particle operators because Pc �= cP . The

Figure 2. Schematic of the starting point for the ‘poor man’s
renormalization’ technique. The cutoff, W , is chosen to be beyond
the largest energy scale of the problem, U . Subsequently, the excess
phase space is squeezed down to a small shell, encompassing U ,
about the Fermi surface.

Figure 3. Illustration of when the low-energy spectrum terminates at
an energy lower than the largest energy scale of the problem, U . One
then projects away these high-energy states (the upper Hubbard
band) and uses the remaining states, which do not mix with the UHB,
to calculate observables.

real one-particle operators are,

ˆci↑ = ci↑(1 − ni↓ni↑) = ci↑ci↓c∗
i↓ =

∑

k,k′ ,k′′
ck↑ck′↓c∗

k′′↓ (5)

and similarly for c∗ P = ĉ∗. These operators will automatically
keep us within the lower Hubbard band, so ‘all’ we need to do
is to evaluate the Green’s function of a three-Fermion operator.

This looks like a hopeless mess but it isn’t. Because
of the strong exclusion principle restrictions on momentum,
and to make the creation of real pseudoparticles energetically
possible, all have to be near the Fermi surface and traveling in
the same direction. Two factorizations are important:

ˆck↑ ≈
∑

q

(ck−q↑ρq↓ + ck−q↓S+
q ) (6)

ρ and S+ are density and spin Tomonaga waves moving in the
direction of the Fermi velocity vF(k). Haldane has shown that
these bosons are a valid alternative representation of a Fermi
liquid [9].

2.2. Green’s function of the HFL

To get spectra we have to calculate Green’s functions of the
‘hat’ operators. For tunneling,

G(i, t) = 〈 ˆc∗
iσ (t) ˆciσ (0)〉 (7)
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Figure 4. Infrared spectrum exponents for Bi2Sr2CaCu2O8+δ . Data
points from [11] with linear best fit of [11] (dashed line) and
predicted value from [2] (solid line). The predicted exponent stems
from σ(ω) = (iω)−2+γ with γ = 1 + 2p, and p is given in the text.
Figure reproduced with permission from [3]. Copyright 2008 by
Macmillan Publishers Ltd.

and for ARPES,

G([ri − r j ], t) = 〈ĉ∗
σ (ri , t)ĉσ (r j , 0)〉 (8)

plus the irrelevant part that goes into the upper Hubbard band.
The averages denoted by 〈 〉 are ground state at T = 0,

or thermal at finite T . These are surprisingly easy because
they factorize, using equations (6) and Fermi liquid rules (spins
independent of each other), into GfreeG∗(t).

The effect on the tunneling spectra was evaluated in [2].
At absolute zero, G∗(t) is the x-ray line problem of Doniach–
Sunjic and is t−p with p = 2(1 − x)2/8 (the factor of 2 for the
two channels in equation (6)). The final result is a power law
Fermi surface singularity:

dI

dV
∝ ωp (9)

and at finite T ,

dI

dV
∝ Re{(AT − iω)p}. (10)

Where does the power law come from? Friedel’s theorem,
basically: in order to change the number of electrons locally,
you have to shift the phase of the whole electron gas and,
eventually, push electrons out through the boundary. Via the
‘orthogonality catastrophe’ this causes power law corrections
to wavefunction overlaps [2].

To get EDCs (i.e. Green’s functions) we rely on Huygens’
principle. That is, G∗(t) is common to all, so Green’s function
in r, t space is G0(r − vFt)G∗(t). To calculate the IR
conductivity we use the simple bubble diagram with no vertex
correction, and take ω � T (both valid approximations). Since
early work of Schlesinger and Collins [10] it has been known
that σ is a power law:

σ(ω) ∝ (iω)−1+2 p. (11)

There have been many measurements since 1989, the latest
being from Timusk (see figure 4) [11].

Figure 5. Relaxation rate, 	, (data points) extracted by fitting the
experimental EDCs. The ‘Doniach–Sunjic’ functional form for the
EDCs was derived in [3]. The solid lines are best fits to
	 = AkBT + Cv2

F(k − kF)
2. The given empirical values fit well to

universal parameters A = 0.85 and C = 3.6 eV−1.

2.3. Finite temperature—a kluge

At finite T , Yuval observed that the integral becomes periodic
in imaginary time with period 2πT [12].

t−p → [sinh(πT t)/πT ]−p. (12)

This we approximate as,

G∗(t) ∝ t−pe−	t . (13)

Here we take 	 = AkBT + Cv2
F(k − kF)

2, A is close to unity
(pπ is a guess) but C is the only arbitrary fitting parameter—a
way of adding in the umklapp scattering rate in the HFL.

It is now easy to Fourier transform to get a ‘Doniach–
Sunjic’ lineshape for the EDCs. Fitting to Dessau and
Koralek’s experiments [13], Casey could get the parameter
values in figure 5 [3]. The (k − kF)

2 dependence came from
this fit, and was a pleasant surprise. We have used C to estimate
the T 2 relaxation of the HFL: it agrees well with the 1/T 2 Hall
effect relaxation time (a long-standing puzzle) [4].

3. Superconducting state

The reason for the power law decay of G∗(t) is the infrared
catastrophe. But with a gap, IR catastrophe goes away. To
calculate lineshapes, we need to do the Doniach–Sunjic in
a superconductor. Fortunately, there is a crib: Ma [14].
Casey has calculate a typical EDC, as seen in figure 6. Near
optimal doping, therefore, it is fairly accurate to calculate using
only the coherent spectrum [1] and get a good simulacrum
of tunneling spectrum complete with universal asymmetry!
Without projection cannot explain asymmetry in point contact
tunneling (Wannier’s theorem).

Dessau’s typical results [13] are more like our prediction
than previous attempts, but still not very good. (i) In the
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Figure 6. Representative EDC based on Ma’s calculation of the
‘Doniach–Sunjic’ lineshape in a superconductor [14] at T = 20 K,
� = 50 meV, and 	 = 5 meV.

real data, the peaks are ragged rather than broadened—this
must be gap inhomogeneity, as emphasized by Yazdani [15].
(ii) There’s much too big a background, at too low energy.
What is new?

D-wave superconductivity greatly enhances the spin
susceptibility and lowers the energy of spin fluctuations in the
general region of (π, π) (because of coherence factors). The
system is starting to see AF instability (note that AF and d-
wave help each other, not compete). Again, the trick is to
factorize the ‘hat’ operator and hence Green’s function,

ciσ = ciσ ci−σ c∗
i−σ = ci−σ S−

i (14)

or

ciσ = ciσ (1 − ni−σ ) (15)

G(0, t) = 〈0| ˆci,↑∗
(t)ci,↑(0)|0〉 = Gcoherent + G inc,density

+ G0(0, t)〈0|S+
i (t)S−

i (0)|0〉. (16)

The last term is the contribution from the resonance. Since
G0 is sharply peaked in energy, the shape of the background
is that of the susceptibility (work of Phil Casey), as seen in
figure 7, and the hump in optimally doped BiSCCO [16].

∫
dt eiωt 〈0|S+

i (t)S−
i (0)|0〉 = χ ′′

i (ω) = N−1
∑

k

χ ′′(k, ω).

(17)
ARPES is a much harder problem—but clearly, as observed,
there will be a big increase in background for states which can
scatter at (π, π). But, crossover to HRVB?

3.1. Resistivity in the strange metal: the bottleneck effect

There are two different dissipative processes for accelerated
electrons. One may be thought of as the decay of
quasiparticles—which are what the electric field sees—into
pseudoparticles, which are the true excitation spectrum. The
second is the scattering rate of the pseudoparticles, which is a
simple Fermi liquid with T 2 dependence. These two processes
act in series to dissipate the momentum to the lattice. This

0 10 20 30
Energy ( meV )

40 50 60 70

Figure 7. ‘Hump’ in tunneling spectrum,
∫

χ ′′(ω)D(E) dE ,
estimated from Hinkov’s susceptibility data [17] and Pan’s tunneling
data [18]1 . The energy is measured from the coherence peak which
should be imagined to be added in around E = 0 with a total area
comparable to that of the hump.
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Figure 8. Comparison of La2−x Srx CuO4 resistivity (data points)
extracted from [19] with the bottleneck resistivity form of
equation (18). Details of the fits and functional parameters can be
found in [4]. The inset shows low temperature region in detail.

means that the slowest one controls the rate of dissipation,
not the fastest. That is, it’s an anti-Matthiessen rule: the
conductivities add, not the resistivities! This is the bottleneck
effect [4].

ρ ∝ (1/T + T0/T 2)−1 = T 2/(T + T0). (18)

This magic formula fits a lot of early data like a glove, as can be
seen in figure 8. Note that it is T 2 at low T , linear with negative
intercept at high—puzzling characteristics from the beginning.

4. Remarks and conclusion

Conventional perturbation theory won’t work: analytic
structure is cuts, not poles. When we go superconducting

1 We are indebted to S H Pan for extracting the curve we show from the
extensive data on which the paper is based.
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gapping of Tomonagons allows real quasiparticles—but the tail
is still not integrable! Manipulations of conventional diagram
theory a la Eliashberg theory [20, 21] are not legitimate
because the conditions for its validity are not satisfied. They
lead to misinterpretations of simulational or experimental data.
(For instance, hole-particle asymmetry does not occur within
Eliashberg though it is manifest in the data.) It appears we
now have a systematic controlled formalism for Gutzwiller
projection which works and is useful—please give it a try!
A similar formalism may work for HRVB. It also appears
laser ARPES is fantastically accurate (recent data from Zhou
in China confirms Dessau). The bottleneck effect seems
rather ubiquitous—we find heavy-electron and organic systems
with the characteristic resistivity shape and the ‘linear T ’
resistivity often ascribed to QCPs is probably this instead,
most of the time. Casey is systematically going through
other transport phenomena—Kadowaki–Woods, Wiedemann–
Franz—and getting agreement.
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